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 Most chemically stable organic materials age through changes on the mesoscopic scale
(from 10 nm to 10 mm).  Examples include the slow crystallization of polymers, changes
in particle size distributions with age, and the swelling of pressed powders.  We began
the Mesochem project to develop a new mesoscopic modeling capability for organic
materials, including polymers, molecular crystals, and filled polymer composites.  Our
goal was to develop and validate novel mesoscopic modeling techniques that are well
suited for materials of interest to LLNL's nation security mission, such as high
explosives, binding agents, and foams.

Although LLNL has a world-class ability to model material properties on the atomic and
macroscopic scales, the structures characteristic of soft matter occur at the mesoscopic
scale, between these two limiting regimes.  Our current ability to model the aging and
dynamical properties of mesoscopic systems is quite limited. In this project, we
developed flexible models of organic matter on the mesoscopic scale.  This has helped
LLNL to better achieve a wide range of programmatic goals, while generating a
scientifically unique model of mesoscale matter.

The complex structure characteristic of soft matter leads to material behavior on a variety
of timescales that are much longer than the 10-ns practical timescale limit of molecular
dynamics.  In order to address this problem, we used dissipative particle dynamics
(DPD), an intermediate-length-scale approach to dynamics.  . 

We developed methods to determine an accurate mesoscopic representation of a system
based on underlying microscale calculations by combining electronic structure and
molecular dynamics simulations to derive effective DPD interactions.  These activities
are described in publication 1, 2, and 5 below.  In these papers we conducted a series of
advanced electronic structure calculations on the TATB molecule, for use in dissipative
particle dynamics calculations.

We then undertook a DPD simulation of the anisotropic thermal expansion of the TATB
molecule.  This is described in publication 4 below.  We were able to shed insight into
the anisotropic thermal expansion of TATB using a first principles approach to
dissipative particle dynamics.

Other work in the project centered on the development of mesoscopic models of polymer
crystallization.  Having conducted extensive ordinary molecular dynamics studies of
crystallization in vinylidene fluoride, we discovered that vinylidene fluoride forms
ordered crystals within 10  to 20 ns when cooled extremely rapidly from the melt.  This is
the first time that bulk, three-dimensional polymer crystallization has been calculated
through molecular dynamics.  This work is described in publication 3 below.

In summary, the mesochem project led to successful mesoscopic models of the thermal
expansion of TATB crystals.  This project is of programmatic interest, and further work
is being carried out in the stockpile stewardship program.  The project also led to the
discovery of ultrafast polymer crystallization.  We are continuing to study this new



phenomenon through large-scale molecular dynamics simulations on our largest
computers.
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